CIN: is het tegenovergestelde van CAPE, maar minstens even belangrijk in een onweerssituatie. De combinatie tussen cape en cin kan voor zwaar onweer zorgen of net de initiatie van onweersbuien afremmen. Bij een lage CIN (-100 / -200) en een zeer grote CAPE is dit bijvoorbeeld het geval. Zonder trigger mag er nog een CAPE bestaan van +2000 j/KG. Er zal niets gebeuren met het pakketje lucht.

Als de CIN echter hoger wordt (-10 / -50 – zie onderstaande weerkaart) bij een grote cape dan bestaat de kans dat het pakketje lucht zodanig onstabiel gaat worden dat het door de CIN breekt. Het pakketje stijgt met een rotvaart de troposfeer in en vormt de eerste buien/onweders.

CAPEKAARTEN UITGELEGD

Cape wordt vaak geraadpleegd door weerbureaus en stormchasers om een indicatie te krijgen van de beschikbare onstabiliteit.

De potentiële energie wordt uitgedrukt in de wiskundige term: Joule per kilogram.
Een hoge CAPE wordt door stormchasers vaak gezien als “hoge onstabiliteit”. Wanneer chasers praten over een zeer onstabiele atmosfeer stijgen de cape waarden vaak boven de 2000J/KG wat als onderdeel gebruikt kan worden voor sterke stijgstromen en zware cellen als zij ontstaan.

Er zijn verschillende soorten cape, ik zal de 3 voornaamste even in het kort uitleggen, later voeg ik de overige toe!

MUCAPE is eigenlijk de meest gebruikte versie van cape maar zeker niet het effectiefst. Deze waarde geeft de maximaal haalbare potentiele energy van een most unstable parcel in de lucht in de laagste 300MB van onze atmosfeer wanneer deze gelift wordt naar het LFC. Deze kun je o.a. vinden op de kaartjes van Wetterzentrale

SBCAPE is een indicator van de onstabiliteit in onze troposfeer. Deze waarde geeft de maximaal beschikbare potentiële energie aan voor een parcel dat vanaf de grond tot het LFC wordt gelift.

MLCAPE is eigenlijk het beste om te gebruiken. Deze geeft de waarden weer van de gemiddelde potentiële energie van parcels in de onderste 100MB van onze atmosfeer wanneer deze gelift worden naar het LFC.

Meer specifiek, CAPE geeft de waarde van het energie wat beschikbaar is wanneer een luchtpakketje verticaal opstijgt. OF hoe een luchtpakketje veranderd in zijn omgeving. Onweerscellen hebben hoge cape waardes nodig, hoe hoger de cape waarde hoe meer energie er beschikbaar is om de cel te laten groeien. Cape is vooral belangrijk wanneer de luchtpakketjes hoog genoeg kunnen stijgen zodat ze in de LFC (layer of free convection, letterlijk vertaald: Laag van de vrije convectie).
Om de cape te vinden in een skew-t thermodynamisch diagram zoals degene die hieronder staat. Het is eigenlijk heel simpel, kijk naar de plaatsen op het diagram waar het pakketjes sounding (de dikke gele lijn) verder naar rechts staat (warmer) dan de rode lijn (de omgevings sounding). Het witgekleurde stuk in het diagram is de Cape!

Een cape waarde die hoger is in de onderste helft produceert een sterkere updraft dan dat deze dunner en langwerpiger is. Ook staat cape voor de maximum snelheid van de verticale stijgingen. Dit wordt vaak uitgesproken als MVV=(SQRT(2*CAPE)) De waarden die hieruit komt geeft een indicatie voor de maximale verticale bewegingen van de updraft in m/s. Snellere stijgingen betekenen krachtigere stijgingen, en krachtige stijgingen kunnen grote hagel veroorzaken, supercellen en gevaarlijke tornado’s.

Het onderstaande overzicht kan gebruikt worden om te kijken welke onstabiliteit er bij een cape waarde hoort. Maar onthoud wel goed, CAPE is alleen de potentiele energie, Hoge cape waarden kunnen niet gebruikt worden om het weer te voorspellen.